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The notion of symmetries, either statistical or deterministic, can be useful for the 
characterization of complex systems and their bifurcations. In this paper, we 
investigate the connection between the (microscopic) spatiotemporal symmetries 
of a space-time function u(x, t), on the one hand, and the (macroscopic) sym- 
metries of statistical quantities such as the spatial (resp. temporal) two-point 
correlations and the spatial (resp. temporal) average, on the other hand. We 
show, how, under certain conditions, these symmetries are related to the sym- 
metries of the orbits described by u(x, t) in the characteristic (phase) spaces. We 
also determine the largest group of spatiotemporal symmetries (in the sense 
introduced in our earlier work) satisfied by a given space-time function u(x, t) 
and indicate how to extract the subgroups of point symmetries, namely those 
directly implemented on the space and time variables. Conversely, we determine 
all the functions invariant by a given space-time symmetry group. Finally, we 
illustrate all the previous points with specific examples. 

KEY WORDS: Spatiotemporal complexity; spatiotemporal symmetries; 
statistical symmetries, two-point correlations; biorthogonal decomposition. 

1. I N T R O D U C T I O N  

Recent ly ,  a n u m b e r  o f  s tudies have  c o n c e n t r a t e d  on  exp lo r ing  spat ia l ly  

ex tended  d y n a m i c a l  sys tems d i sp lay ing  s p a t i o t e m p o r a l  c o m p l e x  b e h a v i o r  

(see ref. 2 and  references therein) .  Such behav io r ,  ub iqu i t ous  in na ture ,  has  

been obse rved  in m a n y  l a b o r a t o r y  expe r imen t s  (-') , and  in mode l s  such as 
coup led  m a p  lat t ices ( C M L s )  and  numer i ca l  so lu t ions  o f  par t ia l  differential  
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equations (PDEs). Due to the complexity of these systems, only a few 
rigorous results on the nature of the dynamics have been obtained (see 
ref. 3 for PDEs in infinitely extended domains and ref. 4 for CMLs). 
Although it is expected that future theoretical advances will be greatly 
enhanced by computational and experimental observations (see, e.g. 
refs. 5-11 ), one of the most challenging issues lies in the methods used to 
analyze complex numerical and experimental data, which have consisted, 
so far, mostly of statistical techniques. (9-~j) The connection with space-time 
deterministic behavior is then unclear. An example of this issue is furnished 
by three recent experiments (~2-~4) which revealed symmetry properties of 
the time and/or space averages of individually asymmetric chaotic patterns. 
As in classical temporal dynamical systems, symmetries in spatiotemporal 
dynamical systems may play a fundamental role which deserves further 
investigation. One important issue, addressed in this paper, is the implica- 
tion of statistical symmetries, namely the symmetries of the (macroscopic) 
statistics, for the symmetries of the (microscopic) space-time behavior 
u(x, t), and vice versa. 

The concept of spatial symmetries is classical in dynamical systems 
theory (see, e.g., ref. 15) and examples are numerous in physics, particularly 
in fluid mechanics. For example, at low Reynolds numbers, the wake flow 
behind a cylinder is steady, namely time independent, and invariant under 
reflection about its center plane x2 = 0 [x] and x3 denoting the streamwise 
and spanwise (along the cylinder axis) directions respectively, x2 the 
remaining direction], so that 

Vxl, x2, x3, Vt, ui(x], X2, -3(3, t) =eiUi(Xl, --X2, X3, t) 

where 
e ~ = + l  if i = l o r 3  

= - -1  if i = 2  

Here, ui denotes the velocity component in the xrdirection. As soon as the 
flow becomes unsteady, such spatial symmetry is instantaneously lost, but 
can be recovered in a spatiotemporal sense. Indeed, the (spatially and tem- 
porally) periodic Karman street, resulting from the primary wake flow 
instability, is invariant under the reflection symmetry about its center plane 
only after a time shift, equal to a half-period, T/2, 

VxI, x2, x3, Vt, ui(x l ,x2,  xa, t )=eiui (x l ,  --x2, x3, t+  T/2 ) 

Similarly, as the street of vortices is convected downstream (without 
deformation if one neglects the wake decay due to viscous dissipation), its 
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(streamwise) spatiotemporal dynamics is that of a traveling wave, so that, 
rather than staying invariant under a spatial shift at a given time, it is 
invariant under the simultaneous action of spatial and temporal shifts, 
namely 

Vx~, x2, x3, Vt, ~ (x l ,  x2, x3, t) = ~(xl  + Xo, x2, x3, t + to) 

Vxo, to such that xo + Cto = O 

c is the propagation speed of the wave. Such spatiotemporal symmetry is, 
of course, characteristic of all traveling waves. In the previous examples, it 
is interesting to note that the existence of a spatiotemporal symmetry 
implies that both the time average of the flow and its (spatial) two-point 
correlation are invariant under the spatial symmetry, while the flow itself, 
at all times, is not. These features are often observed even in more complex 
situations such as fully developed turbulence where it is well known that 
both the (time) mean flow and the Reynolds stresses are invariant under 
spatial symmetries while the instantaneous velocity fields are not. This 
manifests itself as the presence of coherent structures which are symmetric 
in an average sense only. This is the case, for instance, of streamwise vor- 
tices in the wall region of a turbulent boundary layer, which seldom appear 
in pairs of symmetric, counterrotating patterns in cross sections of the flow 
(see, e.g. refs. 16 and 17 and references therein). Nevertheless, most techni- 
ques used for extracting coherent structures from a turbulent background 
are based on averaging procedures and deduce symmetric vortices. As we 
recalled earlier, pattern on average has also been observed experimentally 
in (spatiotemporal) chaotic regimes in Rayleigh-B6nard convection 1~21 in 
the Faraday experiment, ~31 and in rotating thermal convection I ~4): the time 
average has the symmetry of the boundary conditions even though none of 
the time-instantaneous velocity fields has this symmetry. Whether the sym- 
metry of the time average of the solution is a manifestation of the sym- 
metry of the orbit in phase space or not is an open question. We show in 
this paper that a better connection is provided by the notion of space-time 
symmetry, which, in case of a temporal part directly implemented on the 
time variable, is equivalent to the symmetry of the orbit in phase space. In 
contrast, while the symmetry of the time average may be the manifestation 
of a spatiotemporal symmetry (since the latter implies the former), this is 
not necessarily the case. 

In view of the physical examples given above, we concentrate in this 
paper on the important role played by spatiotemporal symmetries (intro- 
duced in ref. 1 ) and point out the difference and connection between those 
and the spatial and temporal symmetries of statistical quantities (par- 
ticularly those of the averages and the two-point correlations). We then 
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define and characterize all the spatiotemporal symmetries satisfied by any 
given function or signal u(x, t). These symmetries form a group, the largest 
group of (finite and infinite) symmetries satisfied by u(x, t), for which we 
give a method of identification. We then show that the existence of a 
spatiotemporal symmetry for which the temporal part is a point symmetry 
is a necessary and sufficient condition for the orbit in the spatial charac- 
teristic space to be spatially invariant and that the time average inherits 
this symmetry. The converse, however, is not true, namely one can find 
situations where the time average is symmetric without the orbit in phase 
space having this property. We also recall that the spatial two-point 
correlation satisfies such symmetry as well and, when this is the case, there 
exists a spatiotemporal symmetry. 118~ All this, of course, remains valid 
when space and time are interchanged. 

Thus, the method exposed in this paper, based on biorthogonal decom- 
positions, provides a universal procedure for detecting all (spatiotemporal) 
symmetries defined in ref. 1. Indeed, the power of such decompositions (see 
Section 2) lies in the fact that all irreducible representations of the group 
of symmetries relevant in the analysis of u(x, t) are naturally realized in 
the spatial and temporal characteristic spaces Z(X) and x(T). Since the 
operator U [see Eq. (2.1)] realizes an equivalence (in the usual sense of the 
representations of groups) between the symmetries realized in X(X) and 
those realized in Z(T), a description of the irreducible representations easily 
follows. The apparent simplicity of our proofs has its roots in the powerful 
theory of operators acting on Hilbert spaces and shows how such a frame- 
work is well adapted to the study of extended spatiotemporal dynamical 
systems and their symmetries, as it is in quantum mechanics. ~19~ 

The paper is organized as follows. In Section 2, after recalling the 
spectral decomposition of the operator U (referred to as a biorthogonal 
decomposition), we point out that such decomposition differs from that of 
the correlation operators U* U (or UU*) (the asterisk denoting the adjoint 
operator). In particular, we list all the operators Us, different from U, for 
which the correlation operators coincide. In Section 3, we recall the defini- 
tion of a spatiotemporal symmetry of a function u(x, t), ~ and define and 
extract the largest group of such spatiotemporal symmetries satisfied by 
u(x, t). We then show that the existence of a spatiotemporal symmetry 
whose temporal component is a point symmetry is a necessary and suf- 
ficient condition for the orbit in the characteristic space z(X) to be 
invariant under the spatial component of the symmetry. Moreover, the 
two-point correlations of u(x, t) and the averages of u(x, t) (the latter only 
under specific conditions on the nature of the spatiotemporal symmetry) 
both inherit the spatial or temporal components of such symmetries, but 
the converse, however, is not true. In Section 4, we determine all the 
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functions u(x, t) which are invariant under a given spatiotemporal sym- 
metry group. Finally, in Section 5, we give examples which illustrate our 
methods and make the distinction between the various types of symmetries. 

2. SPECTRAL DECOMPOSITIONS 

2.1. The operator U. Biorthogonal Decompositions 

Given a function u(x, t), we consider a Hilbert space H(X) of functions 
of x ~ X  ( X c R )  and a Hilbert space H(T) of functions of t ~ T  ( T c R )  
such that 

V~o ~ H(X), (U~o)(t)=f,u(x,t)~o(x)dm(x) (2.1) 

defines a linear operator from H(X) to H(T);  dm(x) denoting the measure 
defining the scalar product in H(X). (For the sake of simplicity, we restrict 
our analysis in this paper to functions defined in one spatial dimension.) 
Similarly, dr~(t) denotes the measure defining the scalar product in H(T), 
so that 

( U*~)(x) = f u(x, t) ~b(t) drh(t) (2.1') 
T 

where the bar denotes the complex conjugate, is the adjoint operator of U. 
Notice that, for a fixed choice of H(X) and H(T), e.g. L2(X) and L2(T), the 
possibility of defining (2.1) and (2.1') as operators imposes some restric- 
tions on u(x, t). For instance, when H(X) and H(T) are identical to L2(X) 
and L'-(T), respectively, u(x, t) must be in L~(X, T) if one wants a 
bounded operator U. Conversely, for a given class of functions u(x, t), it 
is clear that each appropriate choice of the spaces H(,V) and H(T) that 
permits the definition of the (bounded or unbounded) operators U and U* 
by (2.1) and (2.1') may give rise to specific properties of the dynamics, 
particularly in terms of the symmetries (see ref. 18, where such properties 
were exploited). This issue is similar to the problem of selecting a space of 
functions for the solutions of a PDE, which is achieved by either mathe- 
matical or physical reasons. We then consider the spectral decomposition 
of the operator U, whose kernel is precisely the spatiotemporal dynamics 
of interest, u(x, t), or equivalently, that of the operator V: 

V 0 7) 
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Such a decomposition has been referred to as "biorthogonal decomposi- 
tion,,~2o. 18~, (see also ref. 21 tbr its application to fluid mechanics), since it 
decomposes u(x, t) into orthogonal modes of H(X) and orthogonal modes 
of H(T) with a one-to-one correspondence between both sets of modes. If 
the operator U is compact, then we can write 

with Al ~>A~_>~ - 

u(x, t) = ~ A,,ck,,(x)qG(t) (2.3) 
I1 

> 0, and 

(~ , , .  ~ , , , ) . , x ,  = ( r  r  T, = ~ . . . . .  

which converges in norm. The parentheses denote the respective scalar 
products in H(X) and H(T). Hereafter, the spatial eigenmodes ~b,, are called 
topos and the temporal eigenmodes ~,, are called chronos. The one-to one 
correspondence between topos and chronos is given by the operator U 
itself: 

U4~,,=A,,q,,, 

or, equivalently, the operator U*: 

u ' q , , ,  = A, ,~ , ,  

which we call "dispersion relation." The spatiotemporal dynamics can be 
studied as an orbit ~,(x) defined by Vx~ X, ~,(x)=u(x,  t) in the spatial 
characteristic space x (X)=  Ker(U) -L spanned by the ~b,,'s or as an orbit 
qx(t) defined by Vt ~ T, 1L,.(t)= u(x, t) in the temporal characteristic space 
z(T)  = Ker(U*) -u spanned by the qJn's, these two spaces sharing the same, 
minimal dimension. 12~ The extension to noncompact operators with even- 
tually a Carleman or generalized kernel u(x, t) or a continuous component 
of the spectrum can be achieved by application of the theory of eigenfunc- 
tion expansion of self-adjoint operatorsJ ~81 Such a decomposition has its 
origins in the spectral decomposition of operators with symmetric kernels, 
which can be found early in ref. 22 for compact operators and for operators 
with Carleman kernels in ref. 23. It has been proposed as a tool for 
studying spatiotemporal continuous and discrete dynamical systems t~'2~ 
and applied to the derivation of a space-time theory of fully developed 
turbulence, ~8"241 transition to turbulence, t2~ dispersive chaos and 
related states in binary fluid convection] TM _~6j wave propagation phenomena 
and their bifurcations, ~27" 28j coupled map lattices] 2~ 29~ and solutions of the 
Kuramoto-Sivashinsky equation. I ~" 3o) 
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2.2. The Correlation Operator U*U 

The probability theory tool referred to as the Karhunen-Lo+ve (KL) 
expansion or proper orthogonal decomposition, ~3~" 32) in which the sampling 
variable is time, corresponds to the spectral decomposition of U*U whose 
kernel is the spatial two-point correlation. It has been proposed by Lumley 
for its application to turbulence ~33"341 (see also refs. 16 and 17) and applied 
in a number of studies (see the review, in refs. 35 and 36 and references 
therein). In our work, it is fundamental to consider the operator U or V 
for a simultaneous treatment of space and time. Moreover, in the previous 
statistical context, the introduction of averaging techniques different from 
the time average necessarily appearing in U* U, such as an average over the 
spatial symmetries of the system considered, is not related to the issues 
raised in this paper. ~'2~) The latter technique, introduced in ref. 36, and 
used, for instance in ref. 37, to enlarge the statistical ensemble of data of the 
KL expansion, was proposed in ref. 38 to derive reduced dynamical systems 
which preserve the symmetry of the original PDE. 

Returning to the main difference between the operator U* U and the 
operator U, the former acts on the same Hilbert space, while the latter 
does not. To illustrate this point, we consider an operator acting on H, 
Q: H--, H, for which the eigenfunction problem is 

Q~0 = A~o (2.4) 

It is well known that in this case, if ~ is an eigenvector of (2.4), then c~0, 
c e C, is also an eigenvector. The situation is fundamentally different for the 
spectral analysis of (2.1), where the operator U acts from one Hilbert space 
to another one, i.e., 

U: H(X) --+ H(T)  (2.5) 

since the equation 

Uq~= A~ (2.6) 

is then insufficient for determining the eigenvectors. We now need to solve 
simultaneously the two equations 

U~o = A ~  (2.7) 

U*~ = Acp 

or, equivalently, 

0 , 2 , ,  
u o / \ , / / /  
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where the matrix operator is precisely the operator V introduced in (2.2). 
It then becomes clear that a problem for which the equations are given by 
(2.8) is not equivalent to the spectral analyses of U*U and UU* for which 
the eigenequations are 

U* U~o = A2q) 
(2.9) 

UU*~, = A2~, 

Indeed a solution of (2.8) is a solution of (2.9), but the converse is not 
necessarily true. The dispersion relation 4 ~  ~ may be lost in (2.9), as 
becomes clear in the next subsection and in Examples 5.3, 5.4, and 5.6 
given in Section 5. 

2.3. Identi f icat ion of All Functions u(x, t) 
with  the Same Correlations 

Now, one can ask the following question: what are the spatiotemporal 
functions u(x, t) with the same spatial and temporal two-point correlations 
R(x, y) and L(s, t), i.e., 

Lemma 2.1.  
operator U, namely 

R(x,y)=fru(x, t )u(y, t )drh(t) ,  L ( s , t )= f  u(x,s) u(x,t)dm(x) 

[R(x,y) being the kernel of U*U and L(s, t) that of UU*]? 

An operator U~. has the same correlations as an 

U,U.*-- UU* (2.10) 

U.*U~.= U*U (2.11) 

if and only if there exists a pair of unitary operators (S, S), S being defined 
on H(X) and ~ on H(T), that is, there exists a spatiotemporal symmetry 
(see ref. I and Section 3 below) such that 

U.~ = US = (~U (2.12) 

Remark 2.2. This result once again shows the importance ofspatio- 
temporal symmetries. In particular, the existence of such a symmetry (2.12) 
immediately implies the identity of the correlations (2.10) and (2.11) (and 
vice versa). This explains why a spatiotemporal symmetry involving the 
Sl-symmetry defined by the rotation by exp(ifl) is necessarily lost in 
the correlations but not in the operator U (see also Examples 5.3, 5.4, and 
5.6 given in Section 5). 



Spatiotemporal and Statistical Symmetries 801 

Proof. Equation (2.12) trivially implies (2.10) and (2.11). 
Conversely, if (2.10) and (2.11) are true, then the polar decomposi- 

tions of 

U* 0 0') V = ( ;  U*) and V , = ( U  s 

into positive operators and partial isometries, V= W I V] and V~. = W~. I Vsl, 
(see ref. 20 for the polar decomposition of U) are such that: 

(i) IV] = I Vsl. 
(ii) W and W., have common domains and ranks. 

If we write 

W.,.=(O s G,.) and W = ( ;  G) 

we can then define S = GG 7 ] on the common rank of G and Gs, and S = Id 
on the orthogonal complement. Similarly, we define S=GsG -] on the 
common rank of (~ and (~s and S = Id on the orthogonal complement. 
Equation (2.12) can then be easily deduced. 

Remark 2.3. The operators S and S correspond to rotations inside 
the different eigenspaces. If the function u(x, t) varies with a parameter 2, 
the possibility of such rotations inside degenerate eigenspaces of dimension 
higher than one may lead to a spatiotemporal bifurcation at a certain 
parameter value 2 = 2,.. The term "bifurcation" is used here in analogy with 
Poincar~'s terminology regarding temporal systems (see, e.g., ref. 39): we 
say that a space-time bifurcation occurs when there is a lack of smoothness 
in u(x, t) as a function of a parameter, corresponding to a change in the 
qualitative (space-time) behavior of the solution. At 2 =2  c, we assume a 
degeneracy of eigenvalues which cannot be removed by small perturbations 
in the complex plane, while for 2 < 2,., the eigenvalues are nondegenerate. 
From the general perturbation theory of linear operators, we know that the 
(uniquely defined) eigenvectors smoothly vary with 2, for 2 < )l.c. This may 
no longer be true at 2 = 2,., as the degenerate subspace is now spanned by 
equivalent eigenvectors and a rotation of the eigenvectors may occur. Since 
this perturbation theory is applicable to the operator V, rotations may 
occur independently among the topos and the chronos in the degenerate 
eigenspaces and hre equivalent, in view of the present remark, to a change 
of the spatiotemporal symmetries of u(x, t). This systematically leads to 
symmetry-involved bifurcations. [The occurrence of such a bifurcation is 
related to the existence of a cut--which is the projection in the complex 
plane of the intersection of the eigenvalue surfaces--in the complex plane of 
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the extended parameter. (4~ 4t) If such a cut does not exist ("self-avoiding" 
case), the bifurcation does not take place.] As will become clear in 
Section 3.1, if, after and before ;t = 2c, the degeneracy of the eigenvalues of 
U is the same, the symmetries are different, but the two groups of sym- 
metries F~(U) are isomorphic; in contrast, if, after and before 2 = 2c, the 
degeneracy of the eigenvalues of U varies, the groups of symmetries are no 
longer isomorphic: in this case, we observe a symmetry-breaking (sym- 
metry-increasing or -decreasing) bifurcation. An example is given by ref. 27 
in the case of bifurcations of propagating waves through which newly 
formed traveling waves with different speeds appear in the solution: a par- 
ticular case, given in Example 5.5 of Section 5, is furnished by the bifurca- 
tion of a traveling wave to the superposition of two traveling waves (-'?~ for 
which the degeneracy stays the same before and after the bifurcation, so the 
groups of symmetries are isomorphic. The rotation of the eigenvectors, 
however, responsible for the appearance of a new traveling wave has 
changed the symmetries of the solution u(x, t). The space-time translation 
symmetry characteristic of a pure traveling wave is then broken (see ref. 27 
and Example 5.1 of Section 5). 

It is important to note that the existence of a spatiotemporal sym- 
metry is essential in the argument used in the proof of Lemma 2.1. Indeed, 
if one needs the coincidence of the spatial two-point correlations (2.11 ) and 
that of the temporal two-point correlations (2.10), the spatial or temporal 
symmetry alone does not suffice. 

Remark 2.4. If we relax one of the two conditions, e.g., (2.11) [or  
(2.10)], and seek the functions having the same spatial two-point correla- 
tion R(x, y) [or  the same temporal two-point correlation L(s, t)], it then 
suffices to consider the temporal (or spatial) symmetry. More precisely, a 
necessary and sufficient condition for U,. and U to have the same spatial 
(resp. temporal) correlations is the existence of a temporal (resp. spatial) 
symmetry such that Us= SU (resp. Us = US). Note that in this case, the 
temporal (resp. spatial) characteristic space x(T) [resp. z(X)]  of U and 
that of U s do not necessarily coincide, in contrast to the situation of 
Lemma 2.1. 

3. SYMMETRIES  

3.1. The Space-Time Symmetry Group 

The notion of spatiotemporal symmetry has been introduced in ref. 1 
as a pair of operators (S, S), S defined on H(X) and S on H(T), such that 

US = ~U (3.1) 
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and whose conjugate pair (S*, S*) also satisfies 

~* U = US* (3.2) 

where 

since 

F(U) forms a group for the product: 

(SI, SI ) * ($2, ~-~2)= (SI $2, SI ~,~2) 

gl $2 U = ~] USE = USI $2 

Theorem 3.2. Characterization of the spatiotemporal symmetry 
group. Given an operator U, the spatiotemporal symmetry group satisfied 
by U is 

1-'(U) ~ L(U) r~ Lo( X, T) n Unit(X, T) (3.4) 

L(U) = { R e L ( H ( X ) O H ( T ) ) ,  R V =  VR} (3.5) 

Lo(X, T) = { R E L(H(X)  t~ H( T)), 

R ( a l x @ b l r ) = ( a l x @ b l r ) R ,  Va, b~C}  (3.6) 

Unit(X, T ) =  { R ~ L ( H ( X ) O ) H ( T ) ) ,  RR* = R'R--- 1} (3.7) 

Remark  3.3. _F(U) is the intersection of three different sets among 
which only one, L(U), depends on U. The (two) other ones depend only 
on the Hilbert spaces H(J0 and H(T). Obviously, the definition of F(U) 

Equivalently, we can write VR = R V, where 

o) 
Although it is possible to consider non unitary operators, ( ]' ]s~ for the sake 
of simplicity, we restrict ourselves here to unitary operators S and S. 

Given the Hilbert spaces H(X) and H(T),  in order to identify all the 
spatiotemporal symmetries of a given function, it is useful to introduce the 
notion of the spatiotemporal symmetry group of u(x, t). 

Def in i t ion  3.1. The spatiotemporal symmetry group of U is the 
set F(U) of pairs of symmetries such that 

F(U) = { (S, S), S and g unitary acting on H(X) and H(T), and g* U = US* } 

(3.3) 
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implicitly depends on the Hilbert structure used in the definition of the 
operator U. Note that the situation is similar to that met in the study of 
the solutions of partial differential equations (PDE), where the choice of an 
appropriate space of functions is essential. 

Suppose that (S, S)~F(U). By identifying Proof of Theorem 3.2. 
(S, g) with the operator 

acting on H(X)@H(T), one can easily see that REL(U)c~Lo(X, T)c~ 
Unit(X, T). Conversely, if R~L(U) c~ Lo(X, T ) n  Unit(X, T), then 

is systematically of the form (3.8), namely S~2 = $2~ = 0, since it belongs to 
Lo(X, T). Moreover, since R e L(U), we obtain 

g u =  u s  

SU*= U*$ 

Finally, S and S are unitary because R itself is unitary. This shows that R 
can be identified with the pair (S, S) ~ F(U). 

F(U) is the largest group of spatiotemporal symmetries satisfied by U. 
Lo(X, T) is the commutant of the von Neumann algebra of diagonable 3 
operators in H(X)@H(T) and L(U) that of the von Neumann algebra 
spanned by U. It follows that L(U) n Lo(X, T) can be replaced by the com- 
mutant of the algebra spanned by V and diagonable operators, so that 
F(U) = { unitary operators of M( U)' }, where 

M( U) = { V, al x ~ b l  T, Va, b}" 

where we have used the usual notations, M'  for the commutant of M, and 
M" for the commutant of M' (the von Neumann algebra spanned by M). 

We now describe the group F(U) in detail and give an algorithm to 
construct all the symmetries (S, S) satisfied by u(x, t). This technique will 
be implemented on a concrete case in Example 5.1 of Section 5. For the 
sake of clarity, we suppose that the operator U has a discrete spectrum, 
which is the case, for instance, when U is compact. The generalization to 

3 Here, an operator is said to be diagonable if it is the direct sum of scalar operators. 
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the case of continuous spectra can be treated by following the strategy 
adopted in ref. 18 consisting in working in the space of generalized eigen- 
vectors. 

Notat ion 3.4. Let U be the operator whose kernel is the function 
u(x, t) and whose spectrum is assumed to be discrete. We denote by Ak, 
k = 0, 1 ..... the nonzero eigenvalues of U and dk the dimension of the 
respective eigenspaces (E k, E,k). Obviously, 

X(X) = O E~ c H ( X )  (3.9) 
k 

Z(T) = @ L', c H(T) (3.10) 
k 

We now give the theorem of the group reconstruction. 

Theorem 3.5. Reconstruction of the spatiotemporal symmetry 
group. We denote U(dk) the group of unitary operators of dimension dk. 
Given the operator U, the spatiotemporal symmetry group F(U) (intro- 
duced in Definition 3.1) is isomorphic to the direct product of the groups 
U(dk), namely 

F( U).~ I- [ U(dk) (3.11) 
k 

where Notation 3.4 has been used. Therefore, each spatiotemporal sym- 
metry (S, S) in /'(U) is fully specified by the selection of an orthonormal 
basis in each eigenspace E k of U (which are then the eigenvectors of S) and 
the choice of a family of real numbers in [0, l [ ,  0k(1),0k(2) ..... O~(dk) 
{2k(s) = exp[2i~Ok(s)] being the eigenvalues of S}, for each k. 

Proof. The elements (S, S) of F(U) are such that S restricted to Ek 
(resp. S restricted to Ek) is a unitary operator and, conversely, each unitary 
operator on x(X) which commutes with the projections onto each 
eigenspace Ek gives rise to a spatiotemporal symmetry in F(U). This last 
property is due to the fact that the operator U realizes an isomorphism 
between X(X) and x(T), ~-~ and therefore S is systematically fixed by S. 
Since the relation US = SU makes the actions of S (resp. S) on the different 
eigenspaces Ek (resp. Ek) independent, the first assertion of the theorem 
then follows. Tho second part is simply a constructive counterpart of the 
first one. 

Remark 3.6. Given the Hilbert spaces H(X) and H(T), the pre- 
vious theorem gives a recipe for the construction of a/ / the spatiotemporal 
symmetries of U. That is, if we express S (resp. ~) in the basis of the topos 

822/81/3-4-19 
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(resp. chronos) of the operator U, we obtain a block operator defined by 
any unitary transformation acting on each eigenspace of U in X(X) [resp. 
X( T)]. Equivalently, S (resp. S) is defined by the choice of an orthonormal 
basis of eigenvectors in each subspace Ek (resp. Ek) and, for each of these 
subspaces, by the choice of the corresponding dk eigenvalues 2k(S)= 
exp[2igOk(S)], S= 1 ..... dk. Of course, as is well known, the group U(dk) 
has less parameters than those indicated here since, in order to specify 
S ~ U(dk), it suffices to fix one oriented basis, namely a Hermitian matrix 
of trace zero, and one phase 0. Instead, a single symmetry S reconstructed 
with the previous recipe may correspond to various choices of our param- 
etrizations, but this freedom leads to a "natural" choice in practice (see 
Example 5.1 in Section 5). 

Among all the possible spatiotemporal symmetries (S, S), it is interest- 
ing to identify those with a spatial (resp. temporal) component S (resp. S) 
which is induced by an automorphism of the physical space X (resp. T), 
namely the so-called point symmetries. 

D e f i n i t i o n  3.7. S (resp. S) is called a point symmetry if it is 
induced by a measurable automorphism of X (resp. T), namely if there 
exists a measurable, invertible transformation f :  X--, X (resp. g: T--, T) 
such that 

(Sc~)(x) =1 c~(f - '(x)) (3.12) 
a 

where a is a nonzero constant (resp. 

1 
(S~b)(t) = ~  ~b(g-l(t)) (3.13) 

where b is a nonzero constant). 

We denote Fo(U) the subgroup of the point space-time symmetries of 
F(U). Note that allowing the constants a and b in (3.12) and (3.13) to be 
different from one permits the consideration of automorphisms which do 
not preserve the measures dm(x) and d~(t). We now use the next theorem 
to identify Fo(U), which is the transcription of the Multiplication Theorem 
in our context, and therefore we refer to ref. 42 for its proof. 

Theorem 3.8. S is a point symmetry if and only if S and S -~ 
transform any bounded function into a bounded function and 

S(tb I �9 ~b_,) = S~b I - Sq~2 (3.14) 
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whenever e t and r are bounded functions, where the pointwise product is 
def'med by 

vx, (r .~,)(x)=r162 (3.15) 

The same result is true if we replace S by $ and cki(x) by ~li(t), i = I, 2. 

R e m a r k  3.9. In the case where H ( X ) = L 2 ( R )  and H ( T ) = L 2 ( R ) ,  
we proved in ref. t that the only point symmetries i.mpl'emented by differen- 
tiable transformations are dilationtranslations where the transformations f 
and g in (3.12) and (3.13) are 

f ( x )  = +__a2X--Xo (3.16) 

g(t) = +bet - -  to. (3.17) 

where a and b are the. same constants as in (3.12) and (3.13). Therefore, if 
a = b =  1 in (3.16) and (3.17), the on.Iy differentiable point symmetries 
belong to the group of  translations and reflections. An example of a bifur- 
cation through which, the solution is no longer invariant under F 0 is given 
in Example 5.5 in Section 5. 

3.2. Symmetr ies of the  Orbits ~n x(X)  and X(T). 

In this subsection we show when the existence of a spatiotemporal 
symmetry (S, S) implies that the orbit in z(X) is itself invariant under S 
[or the orbit in x (T)  is itselfinvariant under S] and conversely. We recall 
that the (time) orbi~t o'f the dynamical system is defined as the set 
{~,, t e T} in z(X') defined as 

~ A x ) = u ( x ,  t), V x ~ X  (3.18) 

and the space o,rbit as the set { q.,., x ~ X} in X(T) defined as 

q.,.(t) = u(x, t), Vt ~ T (3.19) 

Proposition 3.10. The pair of operators (S, ~) is a spatiotemporal 
symmetry of U where $ (resp. S) is a point symmetry [namely it is 
implemented on the time (resp'. space) variable] if and only if the time 
orbit ~, in x(X).[resp, the space orbit Pl.,- in ;((T)] is invariant under S 
(resp. S), i.e., 

S{.~,, t ~ T} = {~,, t e T} (3.20) 

(resp. 

${ q.,., x ~  X} = {,1.,., x ~ X }  ) (3.21) 
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Proof. Let us define Sg by 

V~b e H(T), Vt, (Sg~,)(t) = ~k(g-l(t)) 

for an invertible, measurable function 
product of the image of ~, by S with 

g. By computing the following scalar 
any function in H(X), we obtain 

Vt, Vcp e H(X'), (S{,, ~) = ({,, S - ' ~ )  

I u(x, t)(S-Icp)(x) din(x) 

=(US-l~o)(t) 

= ($21Uq~)(t) 

= (Uq~)(g(t)) 

= ( ~ l , ,  ~) 

The invariance of the orbit (3.20) immediately follows. 
Conversely, if the orbit is invariant under S,(3.20), then S preserves 

x(X'), since the latter is the smallest linear space containing {~,(x), Vt}, c2~ 
i.e., SX(X)=X(X). This is due to the fact that 

and therefore 

N 

Vcpez(X), cp= lim ~ ak~,, 
N ~ O C  k ~  1 

Then 

N 

k = l  

Vt, ~g(t), V~0EH(X), (S~,,~)=(~g~,~,q) 

Using the same computation as above and since (3.20) implies that g is an 
invertible, measurable function,-we obtain 

US-I = g - 1 U  

The proof is similar for the symmetry of the space orbit r/.,.. 

In the proof of Proposition 3.10, one can see the importance of 
choosing the phase space x(X) (the smallest linear space containing the 
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dynamics), rather than a larger one. Examples where the orbits in x(X) and 
x(T) are invariant by a symmetry are given in Section5, Examples5.1 
5.2, and 5.4. 

Remark 3.11. If, instead of having a spatiotemporal symmetry, 
one has a spatiotemporal quasi-symmetry, ~ defined by a pair of unitary 
operators such that 

US = y'2U 

US* = y - l ~ * U  

where y is a real number different from I, the proof of Lemma 3.13 still 
works if the coefficient y is introduced by using the new operator commuta- 
tion relation. It follows that 

vt, v~o ~ H(X), (Sr ~) = y-~(r ~) 

which means that the symmetric image of the orbit in Z(X) is the orbit 
dilated (or compressed) by the factor y-~, and similarly for the orbit in 
z(T). Such is the situation when S and S are dilation symmetries, as in 
fully developed turbulenceJ ~s'24~ Note that the structure of the quasi- 
symmetry group is very different from that of a symmetry group, described 
in Theorem 3.2, since now each spatiotemporal symmetry acts from one 
pair of eigenspaces (Ek, Ek) to another pair (Ek,, E,,) with k~k ' .  This 
precisely led to the derivation of spectral laws and a self-similar spatiotem- 
poral structure in turbulenceJ ~s'24~ 

3.3. Symmetries of the Time and Space Averages 

In this subsection we investigate under which conditions a spatiotem- 
poral symmetry implies an invariance of the time average (resp. the space 
average). Here, we consider the case where rh (T)<  oo [resp. re (X)< oo] 
since then it is possible to treat the problem inside H(T) [resp. H(X)].  It 
is clear from the proof of Lemma 3.13 (see below) that this condition 
can be relaxed if one replaces the time average defined in (3.22) [resp. the 
space average defined in (3.29)] by a time (resp. space) limit procedure, 
provided we require that u(x, t) satisfies a sufficient uniform continuity 
condition which will permit the inversion of the limits in this proof. 
However, we prefer to restrict ourselves in this subsection to the former 
(simpler) case, which still permits the treatment of most applications and 
we refer the reader to refs. 18 and 43 for the generalization to infinite 
m e a s u r e s .  
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For any spatiotemporal function u(x, t)~L1(T, drh), for m-a.e, xEX,  
we define its time average as 

M,(x) = Iru(x, t) dth( t) 

Def in i t ion  3.12. We define the projector 

/3: H(T)  -* H(T)  

such that 

(/3~)(t) = fT~b( t) dth( t) 

for any ~ E LI( T, dtfi) c~ H(T), and similarly the projector 

P: H(X) ~ H(X) 

(P~)(x) =fx~(X)dm(x) 

such that 

(3.22) 

(3.23) 

(3.24) 

Proof. Since x(T) is the closed linear span of {rL,., x ~ X},1181 we see 
that (3.25) is equivalent to SP= P on x(X). Now, we can write, on one 
hand, 

(M,, 4) = ;r(Uq~)(t) dr~(t) (3.27) 

SM, = M, (3.26) 

if and only if the time average of u(x, t), M,(x), is invariant under S, i.e., 

fr ($tL")(t) dth(t) = frtlX(t) drh(t) (3.25) 

for any ~b e LI(X, din) c~ H(X). 

Notice that P~k defined on H(T) [resp. P~b defined on H(X)],  is a con- 
stant function that is independent of t (resp. x). Moreover, under the given 
finite-weight condition assumed for the measures, the operators P and /3 
are two orthogonal projectors, namely P = p2= p ,  and P = 132=/3,. 

L e m m a  3.13. If u(x,t)~Ll(T, dr~), for m-a.e, x~X,  satisfies a 
spatio-temporal symmetry (S, S), then S fulfills the condition 
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and, on the other hand, 

(SMt, ~) = Ir ( US- ~p)( t) dth(t) 

= fr (~-'U~p)(t) dff~(t) (3.28) 

Since the rank of U is x(T), the equality of (3.27) and (3.28) is equivalent 
to 

VOex(T), fr~O(t) drh(t)=fr(S-l~k)(t)da,(t) 

which ends the proof. 

Remark 3.14. On one hand, the condition concerning the orbit in 
phase space used in the previous lemma is weaker than that used in 
Proposition 3.10 (since the former is only a condition regarding the integral 
of the orbit). On the other hand, the fact that the spatiotemporal symmetry 
is an a priori hypothesis in the previous lemma is a strong condition com- 
pared to Preposition 3.10, where it follows from the hypothesis. Note that 
the condition (3.25) is systematically satisfied if S is a point symmetry, 
namely if it acts on ~k(t) by an action on the variable t, since P~k is a 
constant function. 

R e m a r k  3.15. Lemma 3.13 is still valid if space and time are inter- 
changed (the proof is similar). We can then write the counterpart of 
Lemma 3.13 as follows. Suppose that u(x, t) satisfies a space-time symmetry 
(S, S). Then the operator S satisfies the condition 

fx(S~,)(x) din(x) = fx ~,(x) dm(x) 

or, equivalently, 

S P = P  on x(X) (3.29) 

(that is, S leaves the constant functions invariant) if and only if the space 
average of the function u(x, t) 

M.,.(t) = fx u(x, t) dm(x) (3.30) 



812 Aubry and Lima 

where u(x, t) eL l (X ,  din) for ff~-a.e, t ~ T, is invariant under S, i.e., 

SM,,. = M,. (3.31) 

As in Remark 3.14 for the condition regarding S, the relation (3.29) is 
systematically satisfied if S is a point symmetry. 

3.4. Symmetr ies of the Correlat ion Operators 

Regarding the symmetry issue, the major difference between the 
operator U*U (or similarly UU*) and the operator U lies again in the fact 
that the former acts inside a Hilbert space while the latter does not. 
Nevertheless, the classical notion of a symmetry acting on a single Hilbert 
space can be recovered in two ways: (a) by identifying S (or ~) with the 
identity operator, namely US= U (or S U =  U), in which case the signal is 
invariant under the symmetry at every time t, that is, instantaneously (or 
at every location x, that is, uniformly); (b) in a statistical sense. For the lat- 
ter, it suffices to note that the commutation of U with a spatiotemporal 
symmetry (S, S), expressed in (3.1) and (3.2) implies the commutation of 
U* U with the spatial symmetry S and the commutation of UU* with the 
temporal symmetry ~, i.e., 

U* US = SU* U (3.32) 

UU*~ = rSUU* (3.33) 

[In the case of a spatiotemporal quasi-symmetry as in Remark 3.11, we 
simply have to multiply the right-hand sides of (3.32) and (3.33) by the 
factor ~,2.(~, 18) 

Obviously, Eqs. (3.32) and (3.33) do not imply (3.1) and (3.2). More 
precisely, the number of pairs (S, S) satisfying (3.32), (3.33) is much larger 
than the number of pairs satisfying (3.1), (3.2). This is due to the fact that 
S in x(X) and S in Z(T) are coupled through the isomorphism U in (3.1), 
(3.2) but not in (3.32) and (3.33). Therefore, a symmetry of (3.1), (3.2) is 
stronger than a symmetry (3.32), (3.33). Hereafter, we say that S (resp. S) 
is a statistical spatial (resp. temporal) symmetry if U* U (resp. UU*) com- 
mutes with S, namely (3.32) [resp. (3.33)] is fulfilled. Nevertheless, if there 
exists an operator S (resp. S) such that (3.32) [resp. (3.33)] is satisfied, 
then there exists an operator S (resp. S) such that a spatiotemporal sym- 
metry (3.1), (3.2) holds.ll8~ An example of two functions satisfying the same 
statistical symmetries but different spatiotemporal symmetries is given in 
Section 5 (Example 5.4). 
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4. IDENTIFICATION OF FUNCTIONS WITH GIVEN 
SPATIOTEM PORAL SYM METRIES 

In this section, we give a solution to the inverse problem to that 
resolved in Theorem 3.2, namely we construct all the space-time functions 
which admit a given group of spatiotemporal symmetries. Obviously, if we 
wish that this problem possesses other solutions than the trivial one, i.e., 
u(x, t )=0 ,  the group F =  {(S, S)} must act spatially and temporally in a 
compatible manner. More precisely, F =  {(S, S)} must be such that it is 
possible to find nontrivial subspaces Xr (X)cH(X)  invariant by all the 
spatial symmetries S, and nontrivial subspaces Xr(X)cH(X) invariant 
by all the temporal symmetries S and such that the representation of F 
induced by the operators S on Xr(X) and that induced by the operators 
on Xr(T) are equivalent. By a simple application of Zorn's Lemma, there 
exist two such subspaces Xr(X) and Zr(T) which are maximal. 

As we will see below, the reconstructed functions u(x, t) will be trivial 
on the orthogonal complements of Xr(X) and Zr(T). It turns out that a 
spatiotemporal symmetry group acts as equivalent representations on the 
space and time domains. This property, already mentioned in ref. 1, 
emphasizes the fact that there is only "one" action of the group F and this 
action is simultaneous in space and time. 

Definition 4.1. Given a group of spatiotemporal unitary sym- 
metry operators F =  {(S, ,~)}, we define U(F) as the set of operators U 
having as a space-time group of symmetries, namely 

U(F)={U, US=~UandS*U= US*,V(S,S)eF} (4.1) 

The algebraic characterization of U(F) is rather simple since it is the 
S-right as well as the S-left module generated by any Ue U(F), in par- 
ticular by the unitary intertwining operator of the space and time represen- 
tations of F described above (see ref. 44 for details). We now describe an 
effective algorithm for constructing all the functions u(x, t), such that the 
corresponding operator U belongs to U(F). 

Proposition 4.2. Let F = { ( S ,  S)} be a group of unitary space- 
time symmetries. Then all the functions u(x, t) for which the corresponding 
operator U satisfies the spatiotemporal symmetry group, i.e., F(U) = F, is 
given by the following algorithm: 

(I) Decompose H(X) and H(T) as the finest possible partition such 
that 

H(X) = G EIOXr(X) • (4.2) 
/ 

H(T) = (~)/~/@Zr(X) • (4.3) 
t 
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for all (S, S) e F 
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dim Ez = dim/~t = dr, VI (4.4) 

SEI c Et, V/, VS (4.5) 

'~Ez c El, Vl, V,~ (4.6) 

(2) Choose a (any) partition of the indices l, and for any element of 
the partition K =  {li, ..... li, ..... } denote by EK and /~K the corresponding 
spaces: 

EK= @ Ez (4.7) 

EK = @ /~/ (4.8) 
IEK 

(3) Choose a (any) family of nonnegative numbers indexed by K, 

(4) For each K, choose a (any) linear equivariant isomorphism TK 
from EK onto ~'K, namcly a unitary operator such that 

S T  K = T K S  

(5) Define U by 

Ucp = AK(TKq~) 

for any ~0 e EK, or equivalently 

Proof. 

where 

U(X~ t ) ~  E [K) . {K) A K~O ,,tm(X ) ~b ,,~m( t) 
K 

n(K) e K 

Ill(K) (K) 
.Oh') : T K ~ n i K )  

To prove that US= ~U, by using point (5), we simply write 

U= 0 AKTK 
K 
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We now add some additional remarks. First, the partition described in 
point (1) of the algorithm always exists, but in some cases it may be trivial, 
namely 

E I = H ( X ) ,  ~'l= H(T)  

In this case, U(F) is also trivial. At the other extreme, the partition is the 
finest possible one, namely all the subspaces E t and all the subspaces/~t, 
are one dimensional. An interesting example of the latter case is a locally 
compact Abelian group where the symmetries {(S, ,~)} define irreducible 
(equivalent) representations on each Et and L'I. It is important to point out 
that such a partition depends only on F =  {(S, S)} and, according to 
Theorem 3.2, it fixes the finest block structure of U. It is also clear that, for 
a given U, we have 

and 

z v ( X )  = ~ E K C Z r ( X )  
K 

A K # O  

z u ( T )  = ~ E K c Z r ( T )  
K 

A K # O  

Therefore, one can see that the only nontrivial step in the construction of 
the functions u(x, t) is the investigation of the structure of the irreducible 
representations which decompose/"  into Xr(X)  and Xr (T )  and that of the 
intertwining operators. Once this structure is known, the functions u(x, t) 
are completely determined by the "energies" AK of the corresponding 
irreducible representations o f / "  on Xr(X) and Zr(T) .  

5. EXAM PLES 

We now give examples which illustrate Sections 2-4. 

5.1. Spatiotemporal Symmetries 

Example 5.1. An example of a function satisfying a space-time 
symmetry is a traveling wave defined by 

u(x - x o, t) = u(x, t + to) 

for all x, Xo E X, t, to e T such that xo + Cto = O, c being the propagation 
speed of the wave. We know that this property (~) is equivalent to the 
operator intertwining relation: 

USxo = S,o U and US~ = S,;* U (5.1) 
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where S.,. o is the regular representation of R on H(X')= L2(X) defined by 

( S ,.o qD( x ) = ~o( x - Xo) (5.2) 

and S,0 the regular representation of R on H(T) = L2(T) defined by 

(g,or = ~(t - to) (5.3) 

with the relation Xo + Cto = 0. This obviously implies that the spatial two- 
point correlation function is invariant under S.,.o (cf. Section 3.4), 

VxoeR, S x o U * U =  U 'US , .  o (5.4) 

and the temporal two-point correlation is invariant under S,0: 

V t o e R ,  S,0UU*= UU*S,  o (5.5) 

In addition, since S,0 leaves any constant function invariant, the temporal 
mean of tt(X, l) is invariant under S.,. 0 and, similarly, since S.,. o leaves any 
constant function invariant, the spatial mean is invariant under ~,0 (cf. 
Lemma 3.13 and Remark 3.14). 

We now compute all the spatiotemporal symmetries of U in this case, 
in order to show how Theorem 3.2 works. Recall that, associated with a 
traveling wave in a finite domain is a periodic function g(z) such that 

u(x, t ) = g ( x - c t )  (5.6) 

In addition, we now suppose that g is a real function. The biorthogonal 
decomposition of a real traveling wave is the space-time Fourier decom- 
position with the dispersion relation induced by g,l~l namely 

u(x, t) = ~ Ck[ sin(2~kx) cos(2nkct + Ck) 
k 

-- cos(2nkx) sin(27tkct + Ck)] (5.7) 

where the eigenvalues Ck and the phases Ck are related to the Fourier coef- 
ficients gk of g by 

Ck = 2  Igkl (5.8) 

Im(gk) 
tan(r = (5.9) 

Re(gk) 

Therefore, in the generic case, the spaces Ek and Ek of Theorem 3.2 have 
dimension dk = 2. Following Theorem 3.2, any pair (S, S )eF(U)  is then 



Spatiotemporal and Statistical Symmetries 817 

fully defined by a choice of two parameters 0h(1 ) and 0k(2 ) in [0,I[  and 
a selection of an orthonormal basis { cp]', rp~} in each eigenspace Ek, which 
we parametrize as follows (see Remark3.6 for a comment on such a 
parametrization): 

q~k) = a k  exp(2inkx) - -  b k exp( - 2inkx) (5.10) 

cp ~zk~= ~ exp(2irckx) + ~ exp(--2inkx) (5.11 ) 

with 

a k = COS(CX) exp[2in(~p -- ~b)] 

b k = sin(s) exp(-2in~o) 

We then define the operator S in the following way: 

Sq~] k~ = exp[2inOk( 1)] cp~ k) 

S~o~k'= exp[2inOk(2)] Cp~' 

(5.12) 

(5.13) 

for all k. The corresponding temporal symmetry, obtained from the disper- 
sion relation, gives rise to the orthonormal basis {ff~k~, r of Ek, i.e., 

~k~kl(t) = ak exp(2inckt + Ck) -- bk exp( --2inckt + q~k) (5.14) 

~b~k)(t)=-~kexp(2inckt +r +-f-~k exp(--2inckt  +~b,) (5.15) 

The operator S is then defined by 

~r = exp[2inOk( 1 )] ~k) (5.16) 

~r 7 , = exp[ ZinO k(1) ] ~ ~k ) (5.17) 

Now, by introducing the expression (5.10) of ~b~ *) in (5.12) and that (5.11) 
of r in (5.13), we immediately identify S,. 0 if all coefficients bk are zero 
and 0~ l) =0~ 2) =kxo (mod 1). The corresponding temporal symmetry ~ is 
of course ~,0 such that Xo + Cto = O. 1"(U) contains also the spatial reflection 
symmetry R.,. and the temporal reflection symmetry/~,, but this pair does 
not belong to the same space-time symmetry, namely the time (resp. space) 
companion of R~ (resp. /~,) is not /~, (resp. R.,.). We now consider this 
problem in detail. 

First, it is clear that, from (5.10), (5.11) and (5.12), (5.13), we recover 
the spatial reflection symmetry R x, defined as 

(R,.~,)(x) = ~ ( - x )  (5.18) 
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by taking 

Vk, a k = b k = ~ 2  and 0k( l )=  1, 0k(2)=0 (5.19) 

This symmetry is, of course, satisfied by the spatial two-point correlation 
as well (see Section 3.4). Conversely, the invariance of the spatial correla- 
tion through the reflection symmetry (or any other symmetry) (as noticed, 
for instance, in ref. 45) should not be considered as a statistical artifact: 
such symmetry corresponds to the existence, for the space-time function 
itself, of a spatiotemporal symmetry whose temporal component can be 
computed, as we now show for the particular case of a traveling wave. 

We see that the time symmetry corresponding to (5.18), (5.19), 
obtained from (5.14)-(5.17), using the same values for the parameters ak, 
bk, 0k(1), and 0k(2), has the following property. It leaves invariant the 
chronos corresponding to even topos and acts by a rotation of re on the 
chronos corresponding to odd topos. (This operator corresponds to the 
translation by a half period.) The same is, of course, true if we start with 
the temporal reflection symmetry /~t. On the one hand, following Sec- 
tion 3.1, we see that even if the space and time correlation functions are 
invariant by reflection (Section 3.4), these two symmetries do not form a 
companion pair (S, S) of the same space-time symmetry. On the other 
hand, the fact that the spatial two-point correlation is invariant by reflec- 
tion is not an artifact, it does correspond to the existence of a space-time 
symmetry for u(x, t) itself. 

Example 5.2. Another example is furnished by the Karman street 
flow behind a cylinder (described in the introduction) subject to. a spatio- 
temporal Z2-symmetry group. To illustrate our point, we consider the 
streamwise velocity component as a function of the normal variable (x2) 
which satisfies the spatiotemporal symmetry 

ul(x2, t )=u l (x  2, t - -T/2)  (5.20) 

(where T is the temporal period of the street), which is equivalent to the 
operator intertwining relations 

US = ~U and U*~ = SU* (5.2I) 

where S and ~ are defined by 

(S~o)(x2) = ~o(--x,) (reflection symmetry) (5.22) 

(g~k)(t) = O(t -- T/2) (5.23) 
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Again, the existence of the spatiotemporal symmetry, as well as the fact 
that ~ acts on the time variable (and therefore leaves the constant functions 
invariant), imply that both the spatial two-point correlation and the time 
average of Ul(X,_, t) are invariant under the reflection (Zz-) symmetry 
group (5.22), as is well known in fluid mechanics. For similar reasons (see 
Section 3), the temporal two-point correlation and the space average of 
uj(x2, t) are invariant under the (Zz-) symmetry group (5.23). Moreover, 
the conditions of Proposition 3.10 are satisfied, so that the orbit in Z(X) 
has the spatial symmetry S and the orbit in x(T)  has the temporal sym- 
metry S. 

5.2. Spatiotemporal, Statistical, and Average Symmetries 

We now give examples which illustrate how the various symmetries 
differ. 

E x a m p l e  5.3. Our first example in this category consists of the 
function u(x, t) defined on X =  {x~}, T =  {t~} such that 

u(xl, tl)= exp(ict) (5.24) 

so that the operators U'U, UU* and V are 

U'U= Ix, UU* = 1r  (5.25) 

V ~ (exp0(ioc) exp( 0 lo~)) (5.26) 

On one hand, we consider the eigenvalues and eigenfunctions of V which 
satisfy the equations 

namely 

{exp( --i~) ~k = Acp 
(5.27) 

exp(i~) q~ = A~b 

from which we immediately deduce that the eigenvalues are 1 and - 1. For 
A = I ,  we can choose ~ = 1 ,  which implies that ~bl=exp(-ict);  for 
A = - - 1 ,  we can choose ~b2= 1, which implies that ~b2=-exp(- ic t ) .  We 
conclude that the phase is located in the "dispersion" relation 

~l '--' q,l, ~2,--, ~02 
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On the other hand, we consider the correlation operators U*U and UU* 
for which the eigenvalue/eigenvector problem becomes: 

u* u~ = A2~b (5.28) 

namely, 

l xq~ = AZck 

so that ~b = exp(iO) with any 0 and 

UU*~ = A2~ (5.29) 

namely, 

lrq; =A2~ 

so that ~O = exp(iO') with any 0'. It follows that the isomorphism between 
cp and ff is lost. 

Example  B.4. The following examples illustrate the fact that the 
statistical symmetries of two functions can be identical, but the deter- 
ministic spatiotemporal symmetries different. 

(a) For this, we first consider a traveling wave u~(x, t) of velocity c, 
whose spatiotemporal symmetry, in terms of the corresponding operator 
U~, is 

Vto, UI S_c,0 = S,0 U] (5.30) 

and a traveling wave u2(x, t) of velocity 2c, whose spatiotemporal sym- 
metry, in terms of the corresponding operator U2, is 

Vto, U2S_2,o= S,oU2 (5.31) 

For both waves (i = 1, 2), the statistical symmetries are 

VXo, S~.o I Ui~UiS~.o = Ui~Ui 
(5.32) 

Vt0, STo 1UiU*S,o= UiU* 

In this case, the statistical symmetries are identical but the correlations 
themselves are different. Moreover, the spatial means are invariant under 
spatial translation and the temporal means are invariant under temporal 
translations. 

(b) An example dealing with spatiotemporal symmetries which are 
not pointwise is furnished by functions which are spatially and temporally 
modulated with respect to a reference dynamics uo(x, t), namely 

ul2(x, t)=gl(x)g2(t) Uo(X, t) (5.33) 
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where gl and g2 are the spatial and temporal modulations. We suppose 
that the latter are real functions, different from constants. Assuming that 
Uo(X, t) satisfies some space-time symmetry, one may wonder what remains 
from such symmetry in the modulated dynamics. We have shown that 
under certain conditions the space-time symmetry is deformed but not 
broken and the space-time symmetry of the modulated function can be 
expressed in terms of the symmetry present without modulation, c281 This 
was achieved by expressing the dynamic operator Vj2 associated with u~2 
in terms of the operator V o associated with u0 by introducing the modula- 
tion matrix operator 

G = (  G| 02)  (5.34, 

such that the operators GI and G2 are defined as 

G, : H( X) -~ H( X) 

[ G , ( r  r 

G2: H(T)--* H(T) 

[G2(r  =g2(t) ~b(t) 

(5.35) 

(5.36) 

The dynamic matrix operator VI2 can then be expressed in terms of G and 
V o as 

Vp=GVoG= = (5.37) 
- \ 12 G2 UoGI 

We now suppose that the reference dynamics Uo satisfies a space-time sym- 
metry which leads to an order-two degeneracy of the eigenspaces of Uo. 
The generalization to a degeneracy of higher order does not present any 
additional difficulty, due to the cyclicity of F(Uo). The topos and chronos 
of Uo are written as ~o ~ ~o ~ and ~o+, ~o-, 1, = 1, 2 ..... We can thus choose 
a family of pairs of operators (S,,, S,,) eF(Uo), 1, = 1, 2 ..... such that 

+ = : -  

s , , < o -  = _ < o .  

- 

s , ,  = o+ 

(5.38) 

822/81/3-4-20 
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If G1 and G2 are invertible operators, as is the case if gi(x):~ 0 for all x and 
g2(t) 4:0 for all t, we can introduce the inverse operators, G~ -~ and G~ I. 
We then define the operators 7". and ~,, defined on H( )0  and H(T),  
respectively, such that 

T,,=G~IS,,GI 
(5.39) 

and the operator 

T= ~ P,,T.P. (5.40) 
n 

P,, being the matrix operator 

where (P , ,  P,,) are the resolutions of the identity in the characteristic 
spaces Zo(X) and )o(T) which perform, the spectral decomposition of Uo. 
The operator V~2 always intertwines T and the adjoint of its inverse 
(T-~)  *, that is 

( T - I )  * Vl2= VI2T (5.41) 

Under the condition that the operators G 2 and Vo commute on 
Zo(X)OZo(T), i.e., [ VoG:Vo, Vo] =0,  where [A, B] denotes the commu- 
tator of A and B, t-'8~ T is unitary and becomes a spatiotemporal symmetry 
for the modulated dynamics. Then, we can write 

TVI2 = VI2 T (5.42) 

It is clear that, even if Uo satisfies a point symmetry, this is not the case for 
ul2. Although the previous results are valid independently of the complexity 
and the space-time symmetry of Uo(X, t), 128~ we now illustrate them with a 
spatially and temporally modulated uniformly traveling wave for which 

Uo(X, t) = go(X - ct) 

In this case, it is convenient to consider the Fourier decomposition 
of u12: 

Ul'~(X , _  t)~--- E 6061rrk~l 6 2 ~ 1 7 6 1 7 6  ~ ~ (5.43) 
k , l , m  
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where we have assumed that we can implement discrete Fourier series, 
which is the case, for instance, if u~2 is defined on a space-time domain 
Xx  T where X and T are finite intervals commensurable with the speed c 
of the wave (N[X[ =cM IT[, N and M being integers), and gl and g2 are 
periodic of periods ]X[ and [T[. We denote K, L and M the sets of integers 
k, l, and m for which the corresponding Fourier coefficients of go, gl ,  and 
g2, respectively, are nonzero. In this case, the commutation of G 2 and Vo 
on Xo(X) @Xo(T) can be written as the following nonresonant conditions of 
the spatial and temporal Fourier sidebands: Vk, k' e K, VI, 1' ~ L, 

M k + l = M k ' + l ' ~ k = k ' ,  l= l '  (5.44) 

and Vk, k' ~K, Vm, m' eM,  

N k + m  =Nk'  +m' r =k', m =m' (5.45) 

Under the latter conditions (5.44) and (5.45), the matrix operator T 

T= ~ Pk T(X k, tk) Pk (5.46) 
k 

involving the translation symmetry operators Sk and Sk: 

1 
Sk = S.,. k, with Xk = 4Nk 

1 
S~. = ~,~., with t k=4M k 

defines a space-time symmetry for u j2. Here, the biorthogonal index n has 
been replaced by the Fourier index k since there is always a set of topos 
and chronos of Uo which are Fourier modes (since u0 is a traveling wave) 
and, under the conditions (5.44) and (5.45), the modulated Fourier modes 
are topos and chronos of U12 .(28) It is clear that T is not a point symmetry. 

All the previous points remain valid if go is a nonperiodic function 
considered on the infinite domain Xx  T =  R x R. In this case, uj2 is also a 
nonperiodic function in space and time. A particular explicit example is 
given by the function 

Uo(X, t )=cos[~(x -c t ) ]  +2cos[ f l ( x -c t ) ] ,  with ~/flr Q 

subject to the modulations g~(x)=cos(x) and g,_(t)=cos(ct). The non- 
resonance conditions (5.44) and (5.45) are satisfied if ] a - f i r  > l, in which 
case the modulated wave Ul2(X, t) satisfies the space-time symmetry (5.46). 
(We recall that the technical treatment of the unbounded domain can be 
found in ref. 18.) 
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As in the case of two stationary waves propagating at two different 
uniform speeds (Example5.4a), the spatiotemporal symmetries of two 
spatially and temporally modulated uniformly traveling waves, one propa- 
gating at speed c and the other one propagating at speed 2c, are different, 
while the symmetries of the spatial and temporal two-point correlations are 
the same. 

All the previous results still hold if the modulation depends on the 
eigenspace considered, namely the modulation operators become G t, and 
Ga,, which then appear in the expression of the space-time symmetry 
(5.39). In the case of a traveling wave, this amounts to considering modula- 
tions which are wavenumber and frequency dependent. 

Modulated traveling waves in thin films flowing on an incline surface 
were discovered via the biorthogonal analysis of experimental data. ~461 
The regime studied there displayed rather complex space-time dynamics 
exhibiting splitting and coalescence of wavefronts. 

Example 5.5. We now present two functions which do not satisfy 
the same spatiotemporal symmetry, for which statistical symmetries are 
also different, but for which the temporal averages are both invariant under 
the same spatial symmetry. For this, we consider the traveling wave of 
speed c3: 

u3(x, t ) =g3 ( x - c 3 t )  (5.47) 

and the superposition of two traveling waves of speeds c 3 and c4: 

u4(x, t) = g 3 ( x -  c3t) "b g 4 ( x  -- c4l  ) (5.48) 

While the traveling wave (5.47) is invariant under a spatiotemporal transla- 
tion symmetry, this symmetry is broken in the superposition (5.48), due to 
the presence of space-time resonances between the two wavesJ 271 For  the 
same reason, the statistical spatial and temporal symmetries are also 
broken. However, the time (resp. space) average of the superposition is still 
invariant under spatial (resp. temporal) translations. 

Example 5.6. Finally, we illustrate the fact that two different func- 
tions may have the same spatial and temporal two-point correlations, due 
to a simple rotation of the eigenvectors inside the same eigenspace. For 
this, we consider 

us(x, t) = A sin(ax + bt) (5.49) 

and 

u6(x, t ) = A  cos (ax-b t )  (5.50) 
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Noting that us(x, t) can also be written as 

us(x, t) = A(cos ax sin bt + sin ax cos bt) 

and u6(x, t) as 

825 

u6(x, t) = A(sin ax sin bt + cos ax cos bt) 

we can easily see that Us(X, t) and u6(x, t) have the same temporal and 
spatial correlations, i.e., in terms of the corresponding operators 

u~ u~ = u6 u* 

U~' U5 = U* U6 

u ~ u 6  

but, obviously 

6. C O N C L U D I N G  R E M A R K S  

In general, the symmetries of a dynamical system are of primary 
importance. While this importance has been extensively exploited for tem- 
poral systems, it has been much less investigated for spatiotemporal 
dynamics, although some recent (experimental) observations have drawn 
attention to the subject. 112-~4~ While the latter observations are mostly 
statistical (as they have been for over a century in turbulence), we have 
shown that there is a connection with the existence of spatiotemporal, 
deterministic symmetries (as introduced in ref. 1 ), the examples of which 
are numerous in physics, as soon as solutions become unsteady. With these 
motivations in mind, we have proposed a method to compute all the space- 
time symmetries of a given spatiotemporal function. These symmetries 
form a group, F(U), which is fully determined by the dimensions (d I ..... dk) 
of the spatial and temporal eigenspaces (E~,L'~) ..... (Ek, Ek) of the 
biorthogonal decomposition of u(x, t). It follows that symmetry-increasing 
and -decreasing bifurcations (through which the groups of symmetries 
before and after the bifurcation are not isomorphic) can only occur through 
splittings or crossings of (biorthogonal) eigenvalues as the parameter 
varies. Conversely we have presented a procedure for determining all the 
spatiotemporal functions satisfying a given space-time symmetry group. 
This is important from a practical viewpoint when the (symmetry) group 
is known a priori. 

As far as the relations between various symmetries is concerned, 
we have shown in this paper that the symmetry of the time orbit in the 
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characteristic space z(X) is equivalent to the existence of a spatiotemporal 
symmetry in physical space whose temporal part is implemented on the 
time variable (point symmetry). A similar remark applies to the space orbit 
in the characteristic space z(T). Not only is this connection between the 
dynamics in phase space and those in physical space essential, but it also 
emphasizes once again the crucial role played by spatiotemporal sym- 
metries. Nevertheless, it presents a challenge to experimentalists since 
the detection of such symmetries in signals requires a complete set of 
simultaneous time series at multiple space positions. A reasonable insight 
can be reached by the analysis of the spatial or temporal two-point correla- 
tion, since the presence of a symmetry in either one is equivalent to the 
presence of a spatiotemporal symmetry. The full determination of the latter 
cannot be reached, however, by the analysis of such statistics alone, as the 
space-time isomorphism is then lost. 

Finally, we should mention that the extension of the notion of "global" 
space-time symmetries (such as the translation symmetries characteristic of 
traveling waves) to symmetries which are "local" in the space-time domain 
is in progress. A step in this direction when spatial and temporal modula- 
tional instabilities occur is reported in ref. 28 (see Example 5.4b). Under 
certain conditions, c28~ a global space-time symmetry still exists, but it is no 
longer pointwise. 
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